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Abstract 

Due to the increasing consequences of climate change, many areas in Alberta are becoming prone 

to wildfires that threaten urban infrastructure, defined as the Wildland-Urban Interface (WUI) 

fires. In the last decade, wildfires in Canada have burned an area equivalent to 2.9 million hectares. 

It is, therefore, necessary to develop a more advanced framework to determine fire behaviour 

parameters such as rate of spread (ROS) and head fire intensity (HFI) at the micro-scale. This 

would enable urban decision-makers to take decisive actions toward more resilient infrastructure 

systems. 

The framework proposed in this research employs street-level crowdsensing videos to extract up-

to-date micro-scale fuel information for the fire behaviour prediction system. Automated satellite 

imagery analysis is also applied to extract fuel information in areas with limited crowdsensing data 

availability. AI-based object detection and image segmentation algorithms have been developed 

to detect fuel types and features from the image data. 

The Kinsmen Sport Centre in Edmonton was studied as the building of interest, and the inputs 

from crowdsensing data for August 16th and November 1st, 2022 were used to calculate the rate 

of spread and head fire intensity. This study demonstrates the potential of crowdsensing-based 

methods to extract detailed and up-to-date fuel information necessary for developing strategies to 

mitigate fire risks in WUI areas. 

1 Introduction 

Due to the increasing risk of climate change in the coming years, many areas in Canada where 

wildlands and urban development meet are becoming more susceptible to wildfires. National 

Guide for Wildland-Urban Interface (WUI) Fires [1], issued by the National Research Council of 
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Canada, estimated that 5,553 fires happened in the last decade, damaging around 2.9 million 

hectares of wildland. Urban areas, particularly those situated close to wildlands, are becoming 

more vulnerable as they are located within or near densely forested areas. A recent example is the 

fire that occurred in the city of Lytton, BC on June 30, 2021, which destroyed 151 buildings and 

claimed the lives of 2 people [2]. According to a summary report to the British Columbia FireSmart 

Committee, a fundamental cause of the disaster was the lack of appropriate mitigation on 

vulnerability and exposure of structures to fire-prone wildland areas [2]. In regards to the City of 

Edmonton, river valley fires in 2016 [3] and a most recent one in 2023 [4] are examples of how 

important could be the WUI fire risk assessment for the resiliency of urban buildings and 

infrastructure in a resilient city. 

Although several empirical and accurate approaches have been formulated to estimate the 

fire behaviour in forest fires such as Anderson [5] and Van Wagner [6], they have limited 

approaches to estimate the risk of a wildland fire near buildings and human-made structures. On 

the other hand, National Guide for WUI Fires [1] provides recommendations to reduce the WUI 

fire risk on buildings yet it offers a simplistic approach to estimate the fire behaviour near building 

areas compared to the empirical approaches, presumably due to the lack of real-time data 

availability. Effective features such as seasonal changes in deciduous trees, the curing effect on 

grasses, and the crown base height on conifers, are fundamental parameters that are crucial in 

estimating fire risk. 

 Most common wildfire risk assessments are performed using satellite and aerial images. 

Regarding WUI, employing such technologies for urban vegetation mapping has been the subject 

of previous studies [7]. These technologies allow researchers to capture high-resolution images 

from different angles, making it easier to map urban vegetation cover. One of the advantages of 

using satellite imagery for urban vegetation mapping is its ability to cover large areas quickly and 

efficiently. Additionally, satellite imagery can provide data over extended periods, allowing 

researchers to analyze vegetation cover changes over time. UAV imagery provides even higher 
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resolution images and is useful for mapping small areas or capturing images of vegetation in 

difficult-to-reach locations. However, the use of satellite and UAV imagery has some 

disadvantages. Atmospheric conditions such as cloud cover and haze can reduce the quality and 

accuracy of these images. The cost of obtaining and processing satellite or UAV imagery can also 

be high, which may limit its use in some research projects. Moreover, it is important to note that 

these methods may not provide dynamic and up-to-date information about fuel conditions due to 

the fact that they are not updated frequently. Therefore, while remote sensing techniques can be 

an effective tool for the initial mapping and monitoring of urban vegetation, they should be 

integrated with ground-based regularly-updated sources for a more comprehensive understanding 

of vegetation dynamics in urban areas. 

Recent literature has highlighted trends in assessing urban fuels along street networks, 

which have gained attention and are promoted by a larger number of municipalities [8]. The first 

trend is the growing availability of low-cost, detailed, and crowd-sourced street-level imagery, 

which comprises photographs of street scenes taken from the ground [9, 10]. The second trend is 

the success of Convolutional Neural Networks in extracting abstract features and objects in 

imagery, out-competing traditional methods [11]. Street-level imagery is being used to estimate 

the percentage of detected canopy-covered pixels relative to the total number of pixels in an image, 

which quantifies the “perceived urban canopy cover” [12]. Similarly, Li et al. [13] used green 

pixels in street view scenes to estimate the percentage of vegetation in streets. 

The technique of using street-level imagery along with deep learning has been employed 

to improve the accuracy of tree inventories based on coarse street addresses with accurate 

geographic coordinates [14]. Laumer et al. [14] utilized this method and were able to match 38% 

of over 50,000 identified street trees to their respective street-level addresses. Meanwhile, Wegner 

et al. [15] developed a workflow that combines the results of Faster Region Convolutional Neural 

Network (R-CNN) tree detection from Google Street View (GSV) and aerial imagery with data 

from Google Maps in a probabilistic model to automatically detect and geolocate street trees. They 
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were able to classify 18 different species among the detected trees by using street-level and aerial 

imagery. 

This research aims at developing a framework that will apply novel technologies and 

methods to automate the real-time collection and processing of urban fuel images using artificial 

intelligence (AI) and computer vision, applied to high-resolution satellite images as well as 

crowdsensing videos from car-mounted cameras to address previous limitations and provide 

updated WUI fire risks. This research is performed in multiple stages. First, the satellite images 

will be analyzed to create automated priority zones around buildings considering topography 

effects, as well as automatic micro-level fuel mapping through employing convolutional neural 

networks (CNN). In the next stage, street-level crowdsensing videos from car-mounted cameras 

will be analyzed to identify the type and characteristics of fuels such as curing of the grass, seasonal 

changes on deciduous, and the crown base height of conifers. In the final stage, the Fire Behavior 

Prediction (FBP) and Fire Weather Index (FWI) systems will be implemented to calculate the real-

time fire intensity map around buildings. Therefore, the updated fire risk map will help decision-

makers in mitigating the risk of fires in WUI areas and increases the resilience of future smart 

cities. It is worth noting that throughout this report, the results for each step will be presented for 

the Kinsmen Sport Centre building located in the Edmonton river valley. However, the automated 

process proposed in this study makes it possible to create similar results for any other building 

assuming the availability of the necessary data. 

2 Satellite Image Analysis 

In this section, the automated analysis performed on satellite images is presented. First, topography 

analysis and priority zone detections are discussed. Then, micro-level fuel detection using satellite 

images is presented. 
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2.1 Topographic and Priority Zone Analysis 

One of the important factors affecting the fire risk intensity is topography. As the wind blows 

upward, the flame preheats the fuels located up the hill, causing higher spread levels compared to 

a flat terrain [1]. This step of the analysis follows the WUI Guideline suggestion in implementing 

ground slope effects to adjust priority zones around buildings, which will be covered below. 

The first step is to extract the topographic information for the entire city of Edmonton using 

the open-source database CanVec Series managed by the Government of Canada [16]. After 

finding the elevation data points, the percent ground slope will be calculated as: 

 % 𝐺𝑟𝑜𝑢𝑛𝑑 𝑆𝑙𝑜𝑝𝑒 =
𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛

𝐻𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝐺𝑟𝑜𝑢𝑛𝑑 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒
 100 % (1) 

Fig. 1 shows the topographic map and the percent ground slope of the area around the 

Kinsmen Sport Center building. The percent slope is then used to calculate two parameters, the 

spread factor which scales the rate of spread of the wildfire (m/min) based on how steep the terrain 

is and will be explained in more detail in the As reported in the preceding sections, the 

crowdsensing data from car-mounted cameras can overcome major issues facing satellite-based 

analysis. However, it also has some limitations. For instance, it only can determine fuel 

characteristics along the road and it cannot cover and extract fuel information inside forested and 

parkland areas where roads are not available. Thereby, there is a need to integrate the large-scale 

but low-detailed satellite analysis with the small-scale but high-detailed crowdsensing information 

to have a more precise updated understanding of the fire risk for WUI areas. 

Fire Behavior Analysis section, and the ignition or priority zones which is the area surrounding 

the building that needs fuel treatment to prevent wildfires from spreading and causing damage into 

the building [1]. 



 

 

 

6 | P a g e  

 

 

 

  

Fig. 1. Topographic map (left) and slope map (right) around the area surrounding the Kinsmen Sport Center building 

According to the WUI Guideline [1], the first priority zone extends 0 to 10 meters from the 

building with the first 1.5 meters being a non-combustible zone. this zone should consist of fire-

resistant vegetative combustibles, and potential fuels that cause surface fires, such as mulch and 

wooden debris, should be removed. In addition, the cured grass should be cut to minimize the 

probability of ignition and the fire intensity if it were to occur. The second priority zone extends 

from 10 to 30 meters. In this area, trees should be trimmed, tree branches should be cut at least 2 

meters from the ground and separated at least 3 meters from each other while dry grass, debris, 

and needles should be continuously removed. Finally, the third priority zone extends from 30 to 

100 meters and it should contain fire breaks between trees and other potential flammable 

vegetation. 

To find the priority zones, the Open Database of Buildings from Statistics Canada [17] is 

used to map the buildings of Edmonton and then morphological dilation is performed to generate 

a buffer around the Kinsmen Sport Centre building to get its respective priority zones as we can 

see in Fig. 2. 
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Fig. 2. Priority zones around the Kinsmen Sport Centre building without topographic considerations 

The priority zones then need to be adjusted depending on the slope around them since the 

topography is considered a significant factor in how the fire will spread. According to the WUI 

Guideline [1], only the second and third priority zone should be adjusted depending on the slope 

as follows: 

1) If the slope within the second or the third zone is more than 30% but less or equal to 55%: 

a. The priority zones should be expanded by a factor of 2 in the downward direction: 

i. The second zone is extended from 30 to 60 meters. 

ii. The third zone is extended from 100 to 200 meters. 

b. The priority zones should be expanded by a factor of 1.5 in the horizontal direction: 

i. The second zone is extended from 30 to 45 meters. 

ii. The third zone is extended from 100 to 150 meters. 

2)  If the slope within the second or the third zone is more than 55%: 

a. The priority zones should be expanded by a factor of 4 in the downward direction: 

i. The second zone is extended from 30 to 120 meters. 
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ii. The third zone is extended from 100 to 400 meters. 

b. The priority zones should be expanded by a factor of 2 in the horizontal direction: 

i. The second zone is extended from 30 to 60 meters. 

ii. The third zone is extended from 100 to 200 meters. 

Regarding Kinsmen Sport Centre's surrounding region, the areas with slope ranges of 30~55% and 

above 55% are illustrated in Fig. 3a and Fig. 3b, respectively. Note that the priority zones in this 

figure do not account for the slope effects. 

 

 

(a) (b) 

Fig. 3. Areas with slope ranges of (a) within 30% to 55% and (b) above 55% surrounding the Kinsmen Sport Centre 

building (circled in red represent the slopes inside the priority zones) 

As seen in Fig. 3, several regions with slopes greater than 30% but less than 55% are within the 

second and third priority zones; therefore, we need to extend them by a factor of 2 in the southeast 

direction and by a factor of 1.5 in the remaining direction as per the rules described in the previous 

page. This is automatically done by changing the buffer used to create the priority areas. The 

resulting slope-adjusted priority zones around the Kinsmen Sport Centre building are shown in 

Fig. 4. 
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Fig. 4. Slope-adjusted priority zones around the Kinsmen Sport Centre building 

2.2 Fuel Identification and Classification  

Fuel identification and classification is an important step in identifying several primary 

characteristics of fire behaviour. The FPB system fuel classification is based on the intrinsic 

properties of the area such as composition, floor cover, organic layer, stand structure, etc. [18]. In 

this research, FBP-based fuel types that are commonly found in Edmonton are considered, as seen 

in Table 1. 

The current fuel map used in the Canadian Fire Behavior Prediction (FBP) System, shown 

in Fig. 5, was derived from forest attribute data based on satellite imagery acquired by NASA 

sensors, where the fuel types were assigned based on vegetation type, tree species, crown closure, 

stand height, and other attributes [19]. However, a drawback of this fuel map is that it is on a 

macro-level scale which is not suitable for urban-scale fire risk analysis. Thus, micro-level fuel 

mapping needs to be employed for WUI fire risk assessment. 
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Table 1. Fuel Type and Classification [18] 

Fuel Type Name FBP Label Description 

Deciduous Forest D-1 
The fuel type is composed of moderately trembling aspen, white birch, 

and balsam poplar trees with medium to tall shrubs and herb layers. 

They can be leafless due to spring, fall, or disease. 

Boreal Spruce Forest C-2 

The fuel type is composed of spruce. It contains continuous shrubs; 

moderate woody fuels and their tree crowns might extend to the ground 

which poses a higher risk of crown fires since surface fires can easily 

spread into them.  

Mature Jack Forest C-3 
The fuel type is composed of jack or lodgepoles pine, and their tree 

crowns are separated from the ground. Sparse conifer understory may 

be present. 

Mixed Wood Forests M-1/M-2 

Fuel type is composed of a mix of conifers and deciduous. The fire 

behaviour of these fuels will depend on the composition percentage of 

deciduous/conifers and whether they are leafless (M-1) or with leaf 

(M-2). 

Grass O1 
The fuel type is composed of continuous standing grass. The fire 

properties of this fuel will depend on the percent of curing or dead and 

whether is matted like in early spring or standing like in late summer. 

 

Fig. 5. FPB Fuel Map from the Department of Natural Resources Canada [19] 
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This step of the research aims at developing an automatic and accurate process that will 

identify fuels on a micro-level scale according to the FPB system. Previous studies emphasize the 

use of convolutional neural networks (CNN) to identify wildland fuels in satellite images, such as 

Alipour et al. [20] which focused on the American fuel system, and Lopez-De-Castro et al. [21] 

which focused on the Spanish fuel system. However, no similar process was found for the 

Canadian wildfire system. 

A CNN is a type of neural network that is used to process, classify, and identify objects in 

images. It has a convolutional layer and a significant number of parameters in a neural network 

that can be adjusted from a “training” dataset. In this research, a ResNet-50 architecture, shown in 

Fig. 6, is employed to train a model using high-resolution satellite images provided by Maxar 

Technologies Inc., which are publicly accessible through the Google Maps API. The first step is 

to extract and label 496 summer satellite images across the Edmonton city region presented in Fig. 

7. The assigned pre-labels were grass, trees, and void. Later, more classes will be included 

according to the FBP fuel system. 

 

Fig. 6. Simplified Architecture of a Convolutional Neural Network 
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Fig. 7. Summer Satellite Images (Left), Label Masks (Center), and Overlay Maps (Right) 

The segmentation process in the summer satellite images achieved a validation accuracy 

of 93%. However, a limitation of using summer satellite images is that it is hard to differentiate 

between types of trees, mainly between conifers and deciduous. However, employing winter 

satellite images will address this major challenge since the conifer foliage are noticeable among 

leafless deciduous trees. Through training another CNN of ResNet-50 with 80 labeled winter 

satellite images, shown in Fig. 8, it was possible to identify coniferous areas with a verification 

accuracy of 82% and a testing accuracy of 72.9%. The deciduous areas would then be detected by 

subtracting coniferous areas from tree canopies from summer satellite analysis. 



 

 

 

13 | P a g e  

 

 

 

 

 

Fig. 8. Winter Satellite Images (Left), Label Masks (Center), and Overlay Maps (Right) 

Following the detection of the coniferous, deciduous, and grass-covered areas using the 

CNN, which combined results are shown in Fig. 9, there is a need to differentiate forests from 

smaller canopy areas. Forest could be defined using the definition from the Food and Agricultural 

Organization (FAO) of the United Nations [22] as “land spanning more than 0.5 hectares with 

trees higher than 5 meters and a canopy cover of more than 10 percent”. Therefore, separated 

canopy areas detected from CNN will be compared with the minimum forest area to extract forest 

regions. This process is presented in Fig. 10 for Kinsmen Sport Centre surrounding region. 
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 Fig. 9. Satellite Image of Kinsmen Sport Center Building (Left), Label Masks (Center), and Overlay Maps (Right) 

  

Fig. 10. Isolated canopy areas shown in different colors (left) and areas considered forests (right) 

 Regarding fuel classes, the composition of each of the forested areas will be compared with 

the FBP fuel classification. Fig. 11 represents the flowchart of the FBP-based forest fuel 

classification [23]. It should be noted that in this study, different conifer types such as white and 

black spruce (C-2) or mature jack and/or lodgepole pines (C-3) are not classified separately for 

simplicity, which yields a general conifer class (C). Future studies will be dedicated to 

implementing more fuel types and increasing detection accuracies. 
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Fig. 11. FBP Classification Flowchart from the Composition of Areas in Alberta [23] 

The process of detecting FBP-based fuel classes for the largest forested area in Fig. 10 is shown 

in Fig. 12. This area was found to be composed of 91.4% deciduous and 8.6% coniferous trees. As 

a result, according to the diagram in Fig. 11, the region should be classified as FBP type D since 

the area covered by deciduous trees is greater than 80%. Results corresponding to other forest 

regions in Fig. 10 for the Kinsmen Sport Centre surrounding area are shown in Table 2. The ID 

number of each of the forested regions in Table 2 is shown in Fig. 13a and the final FPB 

classification is illustrated in Fig. 13b. 

 As a result, since all forested areas were made of more than 80% deciduous trees, they are 

classified as D1. However, if they were classified as mixed wood, their leafing condition needs to 

be assigned according to the crowdsensing data to account for M1 and M2 classes. Areas with 

natural grass are classified as type O. 
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Fig. 12. FBP Classification from the Composition of Forested Areas [23] 

  

Table 2. Composition of Forested Areas around the Kinsmen Building Area. 

ID Deciduous coverage Conifer coverage FBP Label 

1 96.7% 3.3% D1 

2 92.6% 7.4% D1 

3 91.4% 8.6% D1 

4 86.9% 13.1% D1 

5 99.0% 0.94% D1 

6 87.6% 12.3% D1 

7 89.6% 10.4% D1 
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(a) (b) 

 Fig. 13. (a) Labeled Forested Areas and (b) FBP Fuel Map. 

3 Street-level Crowdsensing Video Analysis 

This section focuses on analyzing the street-level videos recorded from car-mounted cameras. 

Different fuel types will be detected and their characteristics will be extracted to update fire risk 

assessments. 

3.1 Fuel Identification and Classification  

As explained in the Introduction section, there are several limitations regarding identifying fuels 

using satellite images, such as limitations on the vertical fuel dimensions, seasonal changes such 

as the leafing of the trees, and the curing of the grass, which are all important characteristic that 

determines the fire ignition as well as spread risk assessment. 

 The first step is to implement a computer vision system capable of detecting different types 

of fuel using GoProTM car-mounted video cameras. Similar research was done by Azim et al. [24] 
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in which automatic classification of fuels was done using Google Streetview images based on the 

American fire behaviour fuel model. However, this research employs real-time videos recorded on 

car-mounted cameras and extracts fire behaviour properties from the fuels in addition to detecting 

fuel types.  

To train the detection model, 2179 video frames were collected from various areas in 

Edmonton, followed by labeling objects of interest, including conifers, deciduous (leafless or with 

leaf), and shrubs.  A sample label is shown in Fig. 14 using the LabelMe software. Thereafter, the 

labeled data were augmented and employed to train a CNN capable of identifying the fuels of 

interest. The verification accuracy was reported as 90%. Subsequently, in order to prevent multiple 

detections of a single object, an algorithm known as Simple Online and Realtime Tracking (SORT) 

[25] is employed, which uses a Kalman filter to predict object movements across frames. Fig. 15 

presents prediction samples of different fuel identifications inside street-level video frames. 

 

Fig. 14. Labelling Vegetation in Car Mounted Videos. 
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(a
) 

 

(b
) 

 

Fig. 15. Samples of fuel identification predictions from the CNN Model for (a) conifer and (b) deciduous trees 

3.2 Crown Base Height Estimation 

This section aims at one of the important characteristics of conifer trees. Crown base height (CBH) 

is defined as the distance between the ground and the base of the crown, shown in Fig. 16. A fire 

has a higher rate of spread if the CBH is low since surface fires due to dry grass, debris, or 

horizontal slash have a direct path to the conifer crowns [26]. As such, pruning is usually necessary 
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for high-risk areas to keep CBH within the safe range (around 2 meters or more) and reduce the 

risk of crown fires [26]. 

 

Fig. 16. Fuel Characteristics of Conifers (Beverly, 2020) [26] 

The objective of this section is to estimate the height of conifers using global navigation 

satellite systems (GNSS) embedded in the GoProTM cameras. Due to perspective distortion, the 

object looks smaller from a longer distance, and vice versa. Considering a car traveling along the 

road, this phenomenon can be employed to estimate the dimensions of the objects from car-

mounted video frames, which process is shown in Fig. 17. Considering the error in the GPS sensor 

of the camera, this research only considered detections acquired in a straight path travel of the car. 

The algorithm that was used to filter out detections obtained around a curve is based on the Ramer–

Douglas–Peucker algorithm to approximate straight lines [27]. 

In order to find the height and the location of the tree, the camera is assumed to be 

positioned at an ideally vertical plane, on which the object is located. By having two frames 

captured from an object and knowing the distance the vehicle has traveled between the two frames 

(Δx), employing similar triangles theorem yields the distance of the object from the vehicle, 

according to Fig. 18 and Eq. (2). 
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Fig. 17. Conifer Image Size Increase as The Camera Gets Closer 

 

 

Fig. 18. Representation of the geometry when two frames are captured (as the vehicle moves from point A to B) 
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𝑑

𝑑+Δx
=

𝑦2

𝑦1
=

ℎ

𝑦1
ℎ

𝑦2

=  

ℎ1
ℎ𝑓

ℎ2
ℎ𝑓

=  
ℎ1

ℎ2
 (2) 

In Eq. (2),  d is the horizontal distance of the vehicle from the object in the second position, ℎ1 and 

ℎ2 are the pixel count of the object height inside the first frame and second frame, respectively, 

and ℎ𝑓  is the pixel count of the total height of the frame, which is constant. By simplifying the 

equation, we reach Eq. (3): 

 𝑑 =
𝛥𝑥

ℎ2
ℎ1

−1
 (3) 

After estimating the horizontal distance, the height of the object can be determined according to 

Fig. 19 and Eq. (4), which represent the relationship between the vertical field of view (FOV) of 

the camera and the height of the object. 

 ℎ𝑒𝑖𝑔ℎ𝑡 = 2 tan (
𝐹𝑂𝑉

2
) × 𝑑 ×

ℎ2

ℎ𝑓
 (4) 

 

Fig. 19. Representation of the geometry for the second frame 

Regarding the conifer tree in Fig. 17, the diagram in Fig. 20 shows multiple detections of the same 

tree across multiple video frames (blue dots). Ideally, they should follow a linear pattern. However, 

due to small operational errors, modifications need to be applied in order to estimate the linear 

function. Therefore, the best line is fitted by minimizing the mean squared error, seen in Fig. 20. 
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Fig. 20. Height-Distance Relationship of the Conifer Detected Above. Blue Dots are The Predictions by the CNN 

and Red Line is a Fitted Linear Function 

In order to calculate the tree height, assuming point A at the start point where 𝑥𝐴 = 0, and B at the 

endpoint where 𝑥𝐵 = 46.9, the height in pixels ℎ1 and ℎ2 will be: 

 ℎ1 = 15.043 × 0 + 565.479 = 565 𝑝𝑖𝑥𝑒𝑙𝑠 (5) 

 ℎ2 = 15.043 × 46.9 + 565.479 = 1272 𝑝𝑖𝑥𝑒𝑙𝑠 (6) 

Thereby, the distance from point B and the real height of the conifer is: 

 𝑑 =
𝛥𝑥

ℎ2
ℎ1

−1
=  

46.9−0
1272

565
−1

𝑚 =  37.48 𝑚 (7) 

 ℎ𝑒𝑖𝑔ℎ𝑡 = 2 tan (
𝐹𝑂𝑉

2
) × 𝑑 ×

ℎ2

ℎ𝑓
= 2 tan (

71°

2
) × 37.48 ×

1272

2992
= 22.73 𝑚 (8) 

Hence, the height of the conifer is estimated at 22.7 meters. Several height detections of other 

conifers were performed around and the errors of the distance and height estimation were 5.4% 

and 4.6% respectively.  

Following the height estimation, an additional neural network is trained to estimate the 

CBH and CL with 224 images, as shown in Fig. 21, where below the red line was labeled as CBH 

and above the line was labeled as CL. Therefore, for the example shown before in Fig. 17, the 
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CBH and the CL of the conifer were estimated to be at 6.8% and 93.2% of its total height (22.7 

m), respectively, as illustrated in Fig. 22. 

   

 Fig. 21. Conifer Dataset to Estimate the CBH and CL 

  

 

Fig. 22. Neural Network Estimation for CBH and CL 

3.3 Grassland Curing Assessment 

One of the parameters used to measure the Rate of Spread in accordance with the FBP system is 

the type of grass fuel. The currently available fire behaviour data for grass fuel type in Canada is 

limited. A grass-fire hazard index was developed in 1938 by Wright [28], but it was based on small 

test fires, for which no quantitative rates of spread were recorded. To estimate the spread rate for 

fuel type O-1, which represents grass fuel, regression functions derived from Australian grass fire 
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data were used. Data were available for tall grass and short grass, with the tall grass being 

representative of midsummer fields of dry grass and the cut grass of early spring grass fuel matted 

down by snow loads. 

The percentage of cured or the proportional number of grass stems that have dried out and 

are no longer green and growing is considered to have a significant influence on grassland fire 

behaviour. In the absence of definitive research on this subject, a simple linear relationship was 

adopted based on the understanding that fire spread in grassland is unlikely when the degree of 

curing is less than 50%. The rate of fire spread in grasslands varies roughly in proportion to the 

percentage of cured or dead material. To account for the degree of curing, an equation from the 

FBP system is used to adjust the rate of spread for grass fuel when the degree of curing is less than 

100%, as provided below: 

 𝐶𝐹 = 0.02 × 𝐶 − 1.0          𝐶 > 50 (9) 

where CF is the grass curing coefficient and C is the degree of curing (%). However, when C is 

less than 50%, then the curing coefficient becomes zero. This curing coefficient is an important 

factor that determines the rate of spread for grass and will be discussed more in detail in the Fire 

Behavior Analysis section.  

To account for the grass curing evaluation, updated data from crowdsensing sources is 

needed. The satellite data is not reliable as they are not updated regularly. The videos taken from 

crowdsensing are extracted into frames in order to be analyzed. DeepLab semantic scene 

segmentation model [29] was employed to segment the grass-terrain areas. The pixel coordinates 

of the segmented area are then collected for further analysis. As shown in Fig. 23, the grass field 

from the extracted frame is segmented and shown by a red-colored area.  
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Fig. 23. Extracted frame from crowdsensing data (right), segmented grass field (left) 

In order to assess the curing percentage of grasslands, colour analysis is required. 

Therefore, the coordinates of each segmented pixel along its corresponding color components in 

red, green, and blue (RGB) channels are recorded. To account for the errors and variations, normal 

distributions are fitted to different RGB color channels, as presented in Fig. 24. Then, the mean 

value of the fitted distributions will be extracted to estimate the most probable color outcome of 

the grass region inside the image. In the next step, the hue colour system is employed for a more 

intuitive way of understanding color relationships. 

 

Fig. 24. Normal distribution of RGB colour range for the grassland area 

The HVS colour wheel is a fundamental tool for understanding and working with colour in many 

fields, including art, design, and science. It is a circular diagram that organizes colours based on 

their hue value, which is determined by the wavelength of light that the colour reflects. The wheel 

typically includes 12 segments, each representing a different hue. The hues are arranged in a 
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circular order and often start with red, followed by orange, yellow, green, blue, and purple. The 

wheel can be expanded to include intermediate hues between these primary hues, resulting in a 

more nuanced colour spectrum. To extract the hue value from an RGB colour, you can use an RGB 

to HSV conversion formula. These formulas calculate the hue angle of the color on the color wheel, 

which ranges from 0 to 360 degrees. The resulting hue value can then be used to identify the color 

and its position on the hue color wheel. A representation of the hue color wheel is shown in Fig. 

25. 

 

Fig. 25. Hue color wheel 

Table 3 presents a description of the curing of grasses in south-eastern Australia and the associated 

physiological changes according to the Australian Grassland Curing Guide [30]. In order to extract 

color representations for each curing range, RGB values have been extracted from corresponding 

images of each curing condition, which are presented in Table 4. The RGB values are subsequently 

converted into hue values, which are compared to the average hue value obtained from the colour 

analysis of segmented photos from street-level crowdsensing video frames. 
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Table 3. Grass Curing Characteristics according to the Australian Grassland Curing Guide [30] 

Phase % Cured Grass colour Landscape Features 

Green 

0 Green The landscape is entirely green, with no seed heads visible 

10 Green The landscape is entirely green with seed heads visible 

20 Green-Yellow Seed heads change colour 

30 Green-Yellow Yellowing becoming apparent in leaves 

Yellow 

40 Yellow-Green Green, with yellowing a significant part of the landscape 

50 Yellow-Green The landscape is half-green and half yellow 

60 Yellow-Green Yellow, with green a significant part of the landscape 

Dry 

70 Yellow-Straw A minor amount of green or greenish-yellow visible 

80 Yellow-Straw Non-significant amount of green or greenish-yellow visible 

90 Straw Very little green showing anywhere 

100 Bleached No green anywhere in the landscape 

 

Table 4. RGB ranges corresponding to curing percentages according to the Australian Grassland Curing Guide [30]   

Color RGB Curing Color RGB Curing 

 

RGB: (49, 96, 51) 0% 

  

RGB: (195, 130, 36) 

 

60% 

 

RGB: (68, 119, 65) 

 

10% 

  

RGB: (206, 144, 41) 

 

70% 

 

RGB: (89, 149, 74) 

 

20% 

  

RGB: (217, 175, 71) 

 

80% 

 

RGB: (128, 177, 69) 

 

30% 

  

RGB: (227, 192, 96) 

 

90% 

 

RGB: (151, 193, 75) 

 

40% 

  

RGB: (247, 210, 119) 

 

100% 

 

RGB: (198, 204, 81) 

 

50%    

As reported in the preceding sections, the crowdsensing data from car-mounted cameras 

can overcome major issues facing satellite-based analysis. However, it also has some limitations. 
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For instance, it only can determine fuel characteristics along the road and it cannot cover and 

extract fuel information inside forested and parkland areas where roads are not available. Thereby, 

there is a need to integrate the large-scale but low-detailed satellite analysis with the small-scale 

but high-detailed crowdsensing information to have a more precise updated understanding of the 

fire risk for WUI areas. 

4 Fire Behavior Analysis 

In this section, the focus is on integrating the extracted information from previous stages of 

satellite- and crowdsensing-based analyses toward a more accurate and updated fire risk mapping. 

The current Canadian fire model system is built upon two main components, the Fire Weather 

Index (FWI) [17] and the Fire Behavior Prediction (FBP) [16]. The FBP was developed in 1982 

by Van Wagner and outputs a range of fire behaviour characteristics such as the Rate of Spread 

(ROS) and the Head Fire Intensity (HFI). ROS is the number of meters consumed by the fire per 

minute (m/min) while HFI is the amount of energy released per meter progress of the fire front 

line per second and is often reported in kW/m. In this report, these parameters are calculated for 

the Kinsmen Sport Centre building on two different dates, August 16th and November 1st in 2022, 

to have a better comparison of the changes due to weather and fuel conditions. 

4.1 Rate of Spread 

According to the FBP system, ROS depends on the Initial Spread Index (ISI) and constants (a, b, 

and c) that are related specifically for each type of fuel, calculated as: 

 𝑅𝑂𝑆 = 𝑎 × (1 − 𝑒−𝑏 × 𝐼𝑆𝐼)𝑐 (10) 

Since the fuel detection using satellite images yields deciduous forest D-1 and grass O, the 

corresponding constant values are provided in Table 5. 



 

 

 

30 | P a g e  

 

 

 

Table 5. Rate of Spread Constant for Fuels of Interest [16] 

Fuel Type a b c 

D-1 (deciduous leafless) 30 0.0232 1.6 

O-1a (matted grass) 190 0.0310 1.4 

O-1b (fully cured) 250 0.0350 1.7 

To find the ISI, a set of equations and procedures are used, the starting point of which is to find 

the Fine Fuel Moisture Content (FFMC). FFMC is a unitless numerical rating of the moisture 

content of litter and other cured fine fuels and relates to how flammable these are [18]. The higher 

the FFMC, the higher the probability of ignition. The FFMC is determined by following the FWI 

handbook (Appendix A) procedure where several weather conditions are used as inputs such as 

relative humidity, temperature, rainfall, and wind [17]. These weather data can be obtained from 

weather stations. Meanwhile, the FFMC can be extracted from the Fire Weather Maps managed 

by Natural Resources Canada [18]. Regarding the target dates in this report, the maximum FFMC 

for August 16th and November 1st of 2022 were found as 91 and 84, respectively. Following the 

FFMC, Initial Spread Index with Zero Wind (ISZ) will be extracted from the FWI handbook [17], 

presented in Table 6. Therefore, the ISZ on August 16th and November 1st of 2022 were 5 and 2, 

respectively [17]. 

Table 6. Relationship of the FFMC and the ISZ according to the FWI Handbook [17]  

FFMC 0~32 33~37 38~42 43~47 48~52 53~57 58~62 63~67 68~72 73~77 78~79 80 81 82 83 84 

ISZ 0 0 0 0 0 0.5 0.5 0.5 0.5 1 1 1 1.5 1.5 1.5 2 

FFMC 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 

ISZ 2 2.5 3 3 4 4 5 6 7 8 9 10 11 13 15 

Once the Initial Spread Index with Zero Wind is obtained, then the Rate of Spread with Zero Wind 

will be calculated through the following equations that are characteristically unique for each fuel 

[18]: 
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 𝑅𝑆𝑍𝐷−1 = 30 × (1 − 𝑒−0.0232 × 𝐼𝑆𝑍)1.6 (11) 

 𝑅𝑆𝑍𝑂−1𝑎 = 190 × (1 − 𝑒−0.0310 × 𝐼𝑆𝑍)1.4 × 𝐶𝐹 (12) 

 𝑅𝑆𝑍𝑂−1𝑏 = 250 × (1 − 𝑒−0.0350× 𝐼𝑆𝑍)1.7 × 𝐶𝐹 (13) 

where CF is the curing factor of the grass found in the Grassland Curing Assessment section. After 

assigning the RSZ value for each fuel that was identified from the satellite images in Fig. 13b, the 

slope-adjusted zero-wind rate of spread (RSF) can be calculated through the following equation 

[18]: 

 𝑅𝑆𝐹 = 𝑅𝑆𝑍 × 𝑆𝐹 (14) 

where SF is the spread factor calculated as a function of the slope of the terrain, as below [18]: 

 𝑆𝐹 = 𝑒3.533×(
𝐺𝑟𝑜𝑢𝑛𝑑 𝑆𝑙𝑜𝑝𝑒

100
)

1.2

 (15) 

The variation of the spread factor for the Kinsmen Sport Centre area is shown in Fig. 26. 

 

Fig. 26. Spread Factor for the Kinsmen Area 

Following RSF calculation, the slope-adjusted zero-wind initial spread index (ISF) will be 

calculated through the following equations [18] that are specific for each of the fuels. Eq. (16) is 

proposed for grass classes of O-1a and O-1b, while Eq. (17) represents other fuel classes.  
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 𝐼𝑆𝐹 =
ln(1−(

𝑅𝑆𝐹

𝐶𝐹×𝑎
))

1
𝑐

−𝑏
 (16) 

 𝐼𝑆𝐹 =
ln(1−(

𝑅𝑆𝐹

𝑎
))

1
𝑐

−𝑏
 (17) 

Then, the slope wind speed equivalent (WSE) from ISF, defined as the effect of the percent slope 

on the rate of spread if it were a wind speed [18], will be calculated. This parameter is a function 

of the FFMC as seen in the equation below [18]: 

 𝑊𝑆𝐸 =
ln(

𝐼𝑆𝐹

0.208 ×𝑓(𝐹)
)

0.05039
 (18) 

where f(F) is the FFMC function for the initial rate of spread calculated as [18]: 

 𝑓(𝐹) = 91.9 × 𝑒−0.1386×𝑚 × [1 +
𝑚5.31

4.93×107] (19) 

and “m” is defined as [18]: 

 𝑚 =
147.2 ×(101−𝐹𝐹𝑀𝐶)

59.5 + 𝐹𝐹𝑀𝐶
 (20) 

In the next step, the actual wind will be included as a vector summation in the x and y-axis 

using the following equations [18]: 

 𝑊𝑆𝑋 =  [𝑊𝑆 × sin(𝑊𝐴𝑍)] + [𝑊𝑆𝐸 × sin(𝑆𝐴𝑍)] (21) 

 𝑊𝑆𝑌 =  [𝑊𝑆 × cos(𝑊𝐴𝑍)] + [𝑊𝑆𝐸 × cos(𝑆𝐴𝑍)] (22) 

 𝑊𝑆𝑉 =  √(𝑊𝑆𝑋)2 + (𝑊𝑆𝑌)2 (23) 

 

where WS is the current wind speed, WAZ is the current wind azimuth, and SAZ is the uphill 

slope azimuth. Following the calculation of the net effective wind speed (WSV) in Eq. (23), the 

wind speed function (f(W)) will be calculated through Eq. (24) [18]: 

 𝑓(𝑊) = 𝑒0.05039 ×𝑊𝑆𝑉 (24) 
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Then, the actual rate of spread is determined using the wind speed equivalent function in Eq. (24) 

and the fine foliar moisture function in Eq. (19) through the following equation [18]: 

 𝐼𝑆𝐼 = 0.208 × 𝑓(𝑊) × 𝑓(𝐹) (25) 

 Finally, the ISI will be converted back to the rate of spread through Eqs. (11)-(13) to get 

the slope and wind-adjusted rate of fire spread indices measured in meters per minute [18]: 

 𝑅𝑆𝐼D−1 = 30 × (1 − 𝑒−0.0232 × 𝐼𝑆𝐼)1.6 (26) 

 𝑅𝑆𝐼O−1a = 190 × (1 − 𝑒−0.0310 × 𝐼𝑆𝐼)1.4 × 𝐶𝐹 (27) 

 𝑅𝑆𝐼O−1b = 250 × (1 − 𝑒−0.0350× 𝐼𝑆𝐼)1.7 × 𝐶𝐹 (28) 

Fig. 27 shows the rate of spread for August 16th and November 1st, respectively. The average rate 

of spread for August 16th was 1.54 m/min with a maximum value of 5.36 m/min in the regions 

with higher percent slope, while the average and maximum rate of spread for November 1st were 

1.46 and 11.12 m/min, respectively. The average rate of spread on August 16th was higher than in 

November due to the higher Fine Foliar Moisture Content (FFMC) value. 

  

Fig. 27. Overall Rate of Spread for August 16th (Left) and November 1st (Right) 

A higher FFMC means that weather factors such as relative humidity and temperature facilitate a 

higher probability of fire ignition. On the other hand, some regions on November 1st had a higher 

rate of spread because of the higher levels of grass curing as well as the higher magnitude of the 
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wind speed, which can potentially lead to a higher chance of surface fires. As a result, it can be 

concluded that updated information from integrating street-level crowdsensing videos with 

satellite analysis provides more insights toward parameters affecting fire risks in urban regions. 

4.2 Head Fire Intensity 

Following the findings of the rate of spread, the head fire intensity (HFI), defined as the amount 

of energy released per meter progress of the fire front line per second, will be calculated as one of 

the crucial parameters employed in fire risk assessments.  The equation used to compute this 

parameter is known as Byram’s Fire Intensity Equation and is defined in the FBP system [18] as: 

 𝐻𝐹𝐼 = 300 × 𝑇𝐹𝐶 × 𝑅𝑂𝑆 (29) 

where 300 KJ/Kg is the heat of combustion, TFC is the total fuel consumption and is equal to the 

surface fuel consumption (SFC) plus the crown fuel consumption (CFC), and ROS is the overall 

rate of spread calculated in the previous section. 

The FBP system [18] approximates the SFC for grass to be 0.3 kg/m2. To compute the SFC 

for deciduous, it is necessary to find the buildup index (BUI) which can be obtained by inputting 

the relative humidity and temperature into a lookup table from the fire weather index (FWI) system 

[17]. The SFC for different fuel types is then determined through the following equations: 

 𝑆𝐹𝐶D−1 = 1.5 × [1 − 𝑒−0.0201 × 𝐵𝑈𝐼]  𝑘𝑔/𝑚2 (30) 

 𝑆𝐹𝐶O−1 = 0.3 𝑘𝑔/𝑚2 (31) 

Following the calculation of SFC the grass and deciduous classes, Byram’s fire intensity in Eq. 

(29) is employed to find the HFI for both August 16th and November 1st. The variations of HFI in 

each of the priority zones, previously shown in Fig. 4, are illustrated in Fig. 28 for the two dates 

of August 16th and November 1st. In addition, key statistics of the HFI values per zone on each 

date are presented in Table 7. As expected, the regions located in the southeast of the building, 

where there is a higher percent slope and higher crown fuel, have higher fire intensity.  
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Fig. 28. Fire Intensity in each priority zone for August 16th and November 1st  
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Table 7. Head Fire Intensity Results for the Kinsmen Building Area 

Date Zone Mean [kW/m] Max [kW/m] Max Intensity Location 

August 16th, 2022 

1 141.73 161.99 [53.52566, -113.50520] 

2 386.85 636.32 [53.52592, -113.50826] 

3 231.00 837.68 [53.52428, -113.50544] 

November 1st, 2022 

1 206.95 250.14 [53.52578, -113.50636] 

2 218.18 386.54 [53.52584, -113.50778] 

3 357.29 1394.83 [53.52422, -113.50684] 

HFI is directly related to the flame length, thus it can be used to classify fire intensities. 

According to the National Wildfire Coordination Group (NCWG) website [31], Table 8 can be 

used to rate the fire intensity class from the FBP outputs. Many studies have been conducted to 

relate fire intensity and flame length to fire hazards. For instance, a study by Oregon State 

University [32] has related fire intensity to the susceptibility (damage expectancy) in wildland 

regions. In future studies, such relations can be investigated for urban areas. 

Table 8. The flame length and intensity class corresponding to each threshold of fire intensity [31] 

  

 

 

 

 

 

Intensity Class Flame Length (ft) Fire Intensity Thresholds (kW/m) 

1 < 1 < 10 

2 < 4 < 500 

3 < 8 < 2000 

4 < 12 < 4000 

5 < 18 < 10000 

6 > 18 > 10000 
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5 Graphical User Interface 

This section demonstrates the demonstration (demo) version of a web-based Graphical User 

Interface (GUI) to present the outputs of this research. This GUI is publicly accessible through the 

web address: https://uofa-combine-project.github.io/WUI-Fire-Risk-Assessment/. According to 

the available data presented in the previous sections, the current demo version works for the 

Kinsmen Sport Centre building, showing fuel results as well as fire behavior parameters for two 

specific dates on August 16th and November 1st, 2022. However, the overall features of the GUI 

are developed to be applicable for any building of interest in Edmonton in the future considering 

crowdsensing data availability. 

 The user flow diagram for the proposed GUI is illustrated in Fig. 29. After entering the 

GUI through the landing page, shown in Fig. 31, users can select their building of interest through 

clicking on the building location on the map, noting that only the results for Kinsmen Sport Centre 

building are included in this demo version. Then, users can select their parameter class of interest, 

including the fuel and topography or the fire behavior, as seen in Fig. 31a. Depending on the user’s 

selections, further selections will be provided through another menu, which is shown in Fig. 31b. 

Note that fire behavior parameter class requires the user to select a specific date since they are 

updated results and date-dependent. Finally, the requested map will be generated upon the user's 

click on the bottom, which sample is presented in Fig. 31c. In addition, the GUI provides users 

with the option to download the generated maps. 

https://uofa-combine-project.github.io/WUI-Fire-Risk-Assessment/
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Fig. 29. User flow diagram for the proposed GUI 

 

 

Fig. 30. GUI landing page, available at https://uofa-combine-project.github.io/WUI-Fire-Risk-Assessment/. 
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Fig. 31. Screenshots of the demo version of the GUI, accessible at https://uofa-combine-project.github.io/WUI-Fire-

Risk-Assessment/. 

https://uofa-combine-project.github.io/WUI-Fire-Risk-Assessment/
https://uofa-combine-project.github.io/WUI-Fire-Risk-Assessment/
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6 Conclusions and Future Work 

In this research, a combination of satellite imagery and street-level crowdsensing-based videos 

were employed to determine fire risks in Wildland-Urban Interface zones. This framework 

demonstrated that the automated segmentation and classification of vegetative fuels in satellite 

images is possible using convolutional neural networks (CNNs), and important fuel information 

such as heights or seasonal effects can be extracted using automated crowdsensing-based video 

analysis. Kinsmen Sport Centre building in Edmonton was selected as a location of interest in this 

study and all results were presented for the surrounding region.  

 In the satellite analysis stage, topographic analyses were conducted to determine priority 

zones around the building according to the National Guide for Wildland-Urban Interface Fires. In 

addition, CNNs were employed to automatically detect different fuel types of coniferous and 

deciduous trees as well as ground vegetation with high accuracy. Fuel classifications were then 

conducted according to the Fire Behavior Prediction (FBP) system.  

In the crowdsensing analysis stage, street-level videos from car-mounted cameras were 

used to detect fuel characteristics that could not be seen through satellite imagery. These features 

are listed as the percent curing of the grass, the leafing condition of the deciduous, and the crown 

base height of the conifers. These parameters, combined with up-to-date weather information from 

weather stations, could be employed to create an updated fire intensity map for WUI zones 

following FBP procedures.  

In the final stage, the data extracted from satellite and crowdsensing-based analyses were 

integrated into the FBP-based calculations to calculate parameters such as the Rate of Spread 

(ROS) and the Head Fire Intensity (HFI). These parameters provide insights toward the risk of 

WUI fires and provide valuable opportunities for decision-makers to mitigate fire hazards in urban 

areas. 
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The proposed framework has some limitations that could be investigated in future research 

studies. For instance, the model can be further developed by: 

- Verifying and calibrating the results using empirical data from previously developed 

models. 

- Improving the convolutional neural network to detect different types of conifers such as 

Jack spine and white/black spruce.  

- Developing additional processes to extract weather data at a localized level such as relative 

humidity, temperature, wind speed, and others to have a micro-level map of the 

intermediate fire weather index parameters such as fine foliar moisture content, draught 

code, buildup index, etc.  

- Developing the necessary algorithms to compute fire characteristics other than Rate of 

Spread (ROS) and Head Fire Intensity (HFI) such as: 

o Fire Description (Crown Fraction Burned and Fire Type) 

o Head, Flank, and Back Fire Spread Distances 

o Flank and Back Fire Rate of Spread 

o Flank and Back Fire Intensities 

o Elliptical Fire Area and Perimeter 

o Rate of Perimeter Growth 

o Length-to-Breadth Ratio 

- Developing a system that can process different multiple crowdsensing sources to get more 

robust and reliable data and hence more comprehensive fire risk management. 
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